Metagenomic sequences and 768 microbial genomes from the South China Sea cold seep

  • Ceramicola, S, Dupre, S, Somoza, L, Woodside, GN submarine geomorphology (Editors: Aaron Micallef, Sebastian Krastel and Alessandra Savini) 367-387 (Springer International Publishing, 2018).

  • RAV, SE and others. Global dispersal and local diversification of the methane-leaking microbiome. Brooke. natel. cad. knows the United States of America 1124015-4020 (2015).

    ADS CAS Article Google Scholar

  • Feng, Dr.; and others. Cold seepage systems in the South China Sea: an overview. J. Asian Geosciences. 1683-16 (2018).

    ADS Article Scholar from Google

  • Chang, X.; and others. on site Raman detection of gas hydrates exposed at the bottom of the South China Sea. Geochem. Geovi. Geosci. 183700–3713 (2017).

    ADS CAS Article Google Scholar

  • Chang, X.; and others. Development of a new deep-sea hybrid Raman introduction probe and its application to the geochemistry of hydrothermal venting and cold seepage fluids. Precision in the deep sea. a point. I 1231-12 (2017).

    ADS Article Scholar from Google

  • Kao, L.; and others. on site Revealing the fine heterogeneity of the active cold seep environment in Formosa Ridge, South China Sea. Marine Systems Journal 218103530 (2021).

    Google Scholar article

  • Du, Z., Zhang, X., Xue, B., Luan, Z. & Yan, J. Applications on site Laser spectroscopy of the deep sea cold seepage system and hydrothermal ventilation system. solid earth sciences 5153–168 (2020).

    Google Scholar article

  • Wang, b. and others. A new controllable longitudinal drilling system with a maximum operating depth of 6000m. sea ​​science 4225-31 (2018).

    Google Scholar CAS

  • You are Z and others. on site Quantitative Raman detection of cold and fluid seepage vents in chemosynthetic communities in the South China Sea. solid earth sciences 5153–168 (2018).

    ADS Article Scholar from Google

  • Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: A single-node ultrafast solution to the assembly of large and complex metagenomics via Bruijn’s summary diagram. bioinformatics 311674–1676 (2015).

    Article CAS Scholar from Google

  • Kang, D and others. MetaBAT 2: Adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. berg 7e7359 (2019).

    Google Scholar article

  • Nissen, J and others. Metagenomic assembly and assembly has been improved using deep-variety autocoding. nat. Biotechnology. 39555–560 (2021).

    Article CAS Scholar from Google

  • Wu, Y.W., Simmons, BA & Singer, SW. MaxBin 2.0: An automated assembly algorithm for retrieving genomes from multiple metagenomic data sets. bioinformatics 32605-607 (2016).

    Article CAS Scholar from Google

  • Uritskiy, G.V., DiRuggiero, J. & Taylor, J. MetaWRAP – A flexible pipeline for the analysis of genome-resolved metagenomic data. microbiome 6158 (2018).

    Google Scholar article

  • Olm, MR, Brown, CT, Brooks, B. & Banfield, JF dRep: A tool for rapid and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-duplication. ISME J. 112864-2868 (2017).

    Article CAS Scholar from Google

  • Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: A toolkit for classifying genomes using the Genome Classification Database. bioinformatics 361925–1927 (2019).

    PubMed Central Google Scholar

  • Parks, D. H., Imelfort, M., Skennerton, CT, Hugenholtz, P. & Tyson, GW CheckM: Assessment of the quality of microbial genomes recovered from isolates, single cells, and metagenomics. Genome Precision. 251043-1055 (2015).

    Article CAS Scholar from Google

  • Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, PA metaSPAdes: a new versatile metagenomic complex. Genome Precision. 27824–834 (2017).

    Article CAS Scholar from Google

  • Hayat, Dr. and others. Prodigal: recognition of prokaryotic genes and determination of the translation initiation site. BMC Bioinformatics 11119 (2010).

    Google Scholar article

  • Kanehisa, M. & Goto, S. KEGG: The kyoto encyclopedia of genes and genomes. Res nucleic acids. 2827-30 (2000).

    Article CAS Scholar from Google

  • Buchfink, B., Xie, C. & Huson, D.H. Fast and sensitive protein alignment using DIAMOND. nat. Methods 1259-60 (2015).

    Article CAS Scholar from Google

  • Emms, DM & Kelly, S. OrthoFinder: Phylogenetic Inference for Comparative Genomics. Genome Biol. 20238 (2019).

    Google Scholar article

  • Edgar, RC MUSCLE: Multiple-sequence alignment with high precision and high throughput. Res nucleic acids. 321792-1797 (2004).

    Article CAS Scholar from Google

  • Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. bioinformatics 251972-1973 (2009).

    Article CAS Scholar from Google

  • Price, MN, Dehal, PS & Arkin, AP FastTree 2 – Trees with approximate maximum probability of significant alignment. PLUS ONE 5e9490 (2010).

    ADS Article Scholar from Google

  • NCBI archive reading sequence https://identifiers.org/ncbi/insdc.sra:SRR13892585 (2022).

  • NCBI archive reading sequence https://identifiers.org/ncbi/insdc.sra:SRR13892586 (2022).

  • NCBI archive reading sequence https://identifiers.org/ncbi/insdc.sra:SRR13892587 (2022).

  • NCBI archive reading sequence https://identifiers.org/ncbi/insdc.sra:SRR13892588 (2021).

  • NCBI archive reading sequence https://identifiers.org/ncbi/insdc.sra:SRR13892589 (2021).

  • NCBI archive reading sequence https://identifiers.org/ncbi/insdc.sra:SRR13892590 (2021).

  • NCBI archive reading sequence https://identifiers.org/ncbi/insdc.sra:SRR13892591 (2021).

  • NCBI archive reading sequence https://identifiers.org/ncbi/insdc.sra:SRR13892592 (2021).

  • NCBI archive reading sequence https://identifiers.org/ncbi/insdc.sra:SRR13892593 (2021).

  • NCBI archive reading sequence https://identifiers.org/ncbi/insdc.sra:SRR13892594 (2021).

  • NCBI archive reading sequence https://identifiers.org/ncbi/insdc.sra:SRR13892595 (2021).

  • NCBI archive reading sequence https://identifiers.org/ncbi/insdc.sra:SRR13892596 (2021).

  • NCBI archive reading sequence https://identifiers.org/ncbi/insdc.sra:SRR13892597 (2021).

  • NCBI archive reading sequence https://identifiers.org/ncbi/insdc.sra:SRR13892598 (2021).

  • NCBI archive reading sequence https://identifiers.org/ncbi/insdc.sra:SRR13892599 (2021).

  • NCBI archive reading sequence https://identifiers.org/ncbi/insdc.sra:SRR13892600 (2021).

  • NCBI archive reading sequence https://identifiers.org/ncbi/insdc.sra:SRR13892601 (2021).

  • NCBI archive reading sequence https://identifiers.org/ncbi/insdc.sra:SRR13892602 (2021).

  • NCBI archive reading sequence https://identifiers.org/ncbi/insdc.sra:SRR13892603 (2021).

  • NCBI archive reading sequence https://identifiers.org/ncbi/insdc.sra:SRR13892604 (2021).

  • NCBI archive reading sequence https://identifiers.org/ncbi/insdc.sra:SRR13892605 (2021).

  • NCBI archive reading sequence https://identifiers.org/ncbi/insdc.sra:SRR13892606 (2021).

  • NCBI archive reading sequence https://identifiers.org/ncbi/insdc.sra:SRR13892607 (2021).

  • Chang, H.; and others. Sequencing of metagenomics and 768 microbial genomes from the South China Sea cold seep, Fishshirehttps://doi.org/10.6084/m9.figshare.16625644.v1 (2022).

  • Eisenhofer, R.; and others. Contamination in studies of the low microbial biomass microbiome: issues and recommendations. Microbiol directions. 27105-117 (2019).

    Article CAS Scholar from Google

  • Salter, SJ and others. Reagent and laboratory contamination can critically affect sequencing-based microbiome analyses. BMC Biol. 1287 (2014).

    Google Scholar article

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: a FASTQ all-in-one superfast preprocessor. bioinformatics 34i884–i890 (2018).

    Google Scholar article

  • Leave a Reply

    %d bloggers like this: